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ABSTRACT

The study presents a modified mathematical expression
for the wave-spectrum function in the Fourier representa-
tion of the wave pattern of a ship advancing at constant
speed in calm water. This new expression is obtained from
the well-known usual expression via several applications
of Stokes' theorem for combining the integrals along the
top waterline and over the hull surface of the ship. The
modified expression for the wave-spectrum function is
considerably better suited than the usual expression for
accurate numerical evaluation, notably for evaluating
the short divergent waves of interest for remote sensing
of ship wakes, because the significant numerical cancella-
tions occurring between the waterline and hull integrals
in the usual expression are automatically and exactly
accounted for in the modified mathematical expression, an
is demonstrated mathematically and confirmed numerically.
Whereas the values of both the velocity potential and its
gradient at the hull are required in the usual expression
for the wave-spectrum function, the new expression only
involves the tangential velocity at the hull, not the
potential. This new expression thus defines the wave-
spectrum function in terms of the speed and the size of
the ship, the hull form, and the tangential velocity at
the mean hull surface.
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INTRODUCTION

Near-field potential-flow calculations about ships advancing at constant speeds

in calm water are routinely required for evaluating their hydrodynamic characteris-

tics, in calm water and in waves, and for determining the required propulsion and

control devices. Calculations of far-field ship wave patterns are also important in

connection with wave-resistance predictions and remote sensing of ship wakes. In

particular, the latter practical application requires the ability of determining the

short divergent waves in the wave spectrum having wavelengths between 5 cm and 40 cm

associated with Bragg scattering of the electromagnetic waves in typical SAR systems

used in remote sensing of ship wakes. No meaningful predictions of such short waves

can be obtained on the basis of currently available numerical methods. More

generally, numerical predictions of the steady wave pattern at large and moderate

distances behind a ship are notoriously difficult and unreliable, as was recently

made clear at the Workshop on Kelvin Wake Computations [i]. Ship wave-resistance

calculations are also known to be difficult and unreliable.

Alternative numerical methods have been developed for evaluating near-field flow

about a ship, that is, flow at the hull surface and in its vicinity. These include

finite-difference methods, e.g. Coleman [2] and Miyata and Nishimura [3], and the

more widely used boundary integral equation methods, also known as panel methods.

The latter methods can be divided into two main groups, according to the Green

function that is used. These two groups of methods are the Rankine-source method

and the Neumann-Kelvin method, which are based on the simple Rankine (free-space)

fundamental solution and the more complex Green function satisfying the linearized

free-surface boundary condition, respectively.

The Rankine-source method was initiated by Gadd [4], Dawson [5] and Daube [6],

and has since been adopted by many authors. The Neumann-Kelvin approach has a long
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history. A survey of recent numerical predictions obtained by a number of authors

on the basis of the Neumann-Kelvin method may be found in Baar [7]. This study and

that by Andrew, Baar and Price [8] also contain extensive comparisons of the authors'

own Neumann-Kelvin numerical predictions with experimental data. An approximate

solution, defined explicitly in terms of the value of the Froude number and the hull

shape, to the Neumann-Kelvin problem was proposed in Noblesse [9]. This slender-

ship approximation was recently used by Scragg et al. [10] and compared to both

Neumann-Kelvin predictions and experimental data in [7] and [8] and to experimental

data in [1] and [II].

The aforementioned alternative numerical methods for predicting flow in the

vicinity of a ship are not all directly suitable for predicting the wave pattern of

a ship at large, or even moderate, distances. More precisely, the finite-difference

method and the Rankine-source panel method require truncating the flow domain at

some relatively-small distance away from the ship and therefore can only be used for

near-f ? d flnw calculations. (However, these near-field flow predictions can be

used as input to the far-field Neumann-Kelvin flow representation considered in this

study.) On the other hand, the Neumann-Kelvin theoretical framework is equally

suitable for near-field and far-field flow predictions. Tndeed. the far-field

Neumann-Kelvin flow representation is a simplified particular case of the

corresponding near-field representation.

The problem considered in this study is that of evaluating the steady wave

spectrum and the wave pattern of a ship at moderate and large distances behind it

in terms of the near-field flow on the hull surface. The near-field flow thus is

assumed known for the purpose of the present study, which is concerned with the

prediction of the steady wave spectrum and the wave potential behind a ship stern

within the Neumann-Kelvin theoretical framework as was Just noted.

-3-



This theory expresses the wave potential in terms of a Fourier representation,

as is well known and is specifically indicated by Eq. (20) in this study. The wave-

spectrum (or wave-amplitude) function in this Fourier representation is defined by

the sum of an integral along the mean waterline and an integral over the mean

wetted-hull surface. This expression for te wave-spectrum fi-nction, given by Eqs.

(21)-(23), is quite ill suited for accurate numerical evaluation because the

waterline integral and the hull integral in Eqs. (22) and (23) largely cancel out,

as is shown further on in this study and is illustrated in Fig. 2. Errors in the

numerical evaluation of the waterline and hull integrals cause imperfect numerical

cancellations between these integrals and corresponding large errors in their sum.

This fundamental difficulty was recognized in [9] and in Barnell and Noblesse [12],

where attempts to remedy it were presented. However, these ad hoc approximate

numerical remedies, based upon combining the waterline integral with the

contribution to the hull integral stemming from the upper part of the hull surface

are not satisfactory, as is attested by the fact that a very large number of panels

is required for obtaining reasonably accurate numerical results [12].

A conceptually simpler and numerically more effective remedy is presented in

this study, in which a modified mathematical expression for the wave-spectrum

function is obtained via several applications of Stokes' theorem for combining the

waterline integral and the hull integral. This new expression for ie wave-spectrum

function is considerably better suited than the usual expression for accurate

numerical evaluation, notably for evaluating the short divergent waves of interest

for remote sensing of ship wakes, because the significant numerical cancellations

occurring between the waterline and hull integrals in the usual expression (see

Fig. 2) are automatically and exactly accounted for, via a mathematical

transformation, in the modified expression obtained in this study. The fundamental
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advantage of the new expression over the usual one is apparent from Figs. 8a-e.

Another interesting feature of the modified expression for the wave-spectrum

function is that it only requires the tangential velocity at the hull, not the

potential, whereas the usual expression requires the values of both the velocity

potential and its gradient at the hull. The modified expression thus defines the

wave-spectrum function in terms of the speed and the size of the ship, the hull

form, and the tangential velocity at the mean hull surface. This expression is

suitable for use in conjunction with a boundary-integral-equation method based on a

source distribution or any other numerical method in which the velocity vector (but

not the potential) is determined on the mean hull surface. It provides a coupling

between a far-field Neumann-Kelvin flow representation and a near-field flow

calculation method based on the use of Rankine sources or finite differences, in

particular.
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NEUMANN-KELVIN REPRESENTATION FOR THE STEADY WAVE POTENTIAL OF A SHIP

As was already noted, this study considers steady potential flow about a ship

advancing at constant speed in calm water of infinite depth and lateral extent.

Nondimensional coordinates and flow variables are defined in terms of the length L

and the speed U of the ship and the water density p. The undisturbed sea surface is

chosen as the plane z - 0, with the z-axis pointing upwards, and the x-axis is taken

in the ship centerplane (port- and starboard-symmetry is assumed) and pointing

towards the bow, as is depicted in Fig. 1. The Froude number and its inverse are

denoted by F and v, respectively, and are given by

F = U/(gL)1/2 = 1/v , (1)

where g is the acceleration of gravity.

Within the so-called Neumann-Kelvin theoretical framework, the velocity poten-

tial *(t), at any point = (E, n, C < 0) strictly outside the ship hull surface, is

defined by the following integral representation [9]:

= ip() + X(+;,) , (2)

F 2 f w nx2ty dX +fhjnx da (3)

X = F2fJw [T(txt d+

- fh *aG/an da + F2J f Uir() dxdy , (4)

where

=() _ [DO/ax-(VO) 2 /2]a(./az+F2 a2 /ax 2 ) / az

- a(vo) 2 /ax + V$.V(V)2 /2 + O(F 2 3 ) . (5)

In Eqs. (3) and (4), the symbols w, h and f represent the positive halves of the

mean waterline, of the mean hull surface and of the mean free surface, respectively,

as is depicted in Fig. I (where h - s + b with s = hull side and b = hull bottom).

Furthermore, dl is the differential element of arc length of w and da the differen-
+

tial element of area of h. Also, n - (n , ny, n) is the unit vector normal to h

-7-



+

and pointing outside the ship, t = (tx, ty, tz = 0) is the unit vector tangent to w
+

and pointing towards the bow and s = (sx, Sy, sz ) is a unit vector tangent to h and

pointing downwards, as is shown in Fig. 1. In Eq. (4), 0t and 0s represent the
+

components of the velocity vector V4 in the directions of the tangent vectors t and
+

s to h, respectively.

The nonlinear term n(O) defined by Eq. (5) and the corresponding free-surface

integral in Eq. (4) are associated with the nonlinearities in the free-surface

boundary condition. This nonlinear term is usually neglected in practice.

The term G = G(;x) in Eqs. (3) and (4) is the Green function for port- and

starboard-symmetry defined as

G 5(&;x) = G(E;x,y,z) + G( ;x,-y,z) , (6)
+

where G(C;x) is the Green function associated with the linearized free-surface

22 2+boundary condition aG/ac + F a G/a3 = 0. The function G(Q;x) represents the

linearized flow created at the point Q = ( , n, C < 0) by a unit outflow at the

point x = (x, y, z < 0), stemming from a submerged source if z < 0 or from a flux

across the mean free surface if z = 0 as is shown in Noblesse [13]. In the fore-
+

going equations and hereafter, C represents the "calculation point", where the

potential is evaluated, while x represents the "integration point" in the integrals

on w, h and f.

The Green function may be expressed as the sum of three terms, as follows

[13,9]:
+ + + + 2 + 2 +

41rG(r;x) - S(E;x) + 2v N(X) + 4v H(x-C)W(X) , (7)
+

where v is the inverse of the Froude number given by Eq. (1), and X is defined as

X = (X, Y, Z < 0) = [v ( -x), V2(n-y), v2(C+z)] , (8)

and represents the vector of coordinates, rendered nondimensional with respect to

the characteristic wavelength U 2/g instead of the ship length L, joining the free-
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surface mirror image (x, y, -z) of the singular point (x, y, z) to the calculation

point (Q , ,).

The term S(t;x) in Eq. (7) corresponds to a superposition of a Rankine source at

the singular point (x, v, z) and a Rankine sink at its free-surface mirror image

(x, y, -z), as follows:

S(t;x) = -[ (-x) 2+(n-y)2+(-z)2 ] -/2+[(-x)2+(n-y)2+(+z)2 ]-/2 (9)

The second term N(X) in Eq. (7) represents a nonoscillatory near-field (local) flow

+

disturbance. Finally, the term W(X) represents the system of Kelvin waves trailing

behind the singular point (x, y, z), as is indicated explicitly by the Heaviside

unit-step function H(x- ).

By using expression (7) for the Green function in Eqs. (6) and (3)-(4) we may

+

express the potential 0(Q) defined by Eq. (2) as the sum of three potentials, as

follows:

0Q)= S(t) + + W , (10)

which are readily defined by Eqs. (2)-(4) and (6) in which the Green function G is

simply replaced by S/(4w), v 2N/(2n) and v H(x-E)W/7r, respectively.

Numerical evaluation of the potential 0 S associated with the singular algebraic
+

term S given by Eq.(9) is a fairly simple task (especially for points C strictly

outside the ship since the term S then is never singular) for which extensive expe-

rience is available in both aerodynamics and hydrodynamics. In particular, only the

hull-surface integrals in Eqs. (3) and (4) need be considered for the potential S

since Eq. (9) shows that we have S = 0 on w and f, where z = 0.

Numerical evaluation of the nonoscillatory near-field potential 1N in Eq. (10)

associated with the nonoscillatory near-field term N in Eq. (7) is also a relatively
+ +

simple task because the terms N(X) and VN(X) are sufficiently well-behaved functions

that can be evaluated numerically with satisfactory accuracy and efficiency. In

-9-



+ +

particular, the function N(X) remains finite at the origin X = 0 whereas the func-
+

tion VN(X) has a relatively weak singularity, which is given in Noblesse [14].

Furthermore, this singularity does not occur for points strictly outside the ship.

The integrals on w, h, and f in Eqs. (3) and (4), where G is replaced by N, can then

be evaluated numerically by using ordinary integration rules since the integrands in

these integrals are continuous everywhere and nonoscillatory (except for the poten-

tial 0 and the free-surface nonlinear term 1, which are wavy functions with a char-

acteristic wavelength explicitly defined in terms of the value of the Froude

number). Accurate and efficient methods for numerically evaluating the terms N and

VN have recently been developed by Newman [15] and by Telste and Noblesse [16].

Numerical evaluation of the wave potential 0W in Eq. (10) associated with the

wave term W in Eq. (7) is considered in this study. The wave potential 0W dominates

the nonoscillatory near-field potential $S + N at some distance behind the ship, as

is well known, and W is the most important component for practical applications to

wave-resistance predictions and remote-sensing of ship wakes. The behavior of the

oscillatory term W, which represents the system of Kelvin waves trailing behind the

+

singular point x as was already noted, is considerably more complex than that of the
+ +

nonoscillatory near-field term N. In particular, the functions W(X) and VW(X) have
+

strong and complex singularities at the origin X - 0 and are ill behaved in the

vicinity of the line Y - 0 = Z and X < 0, as is shown in Ursell [17] and Euvrard

[18]. Accurate numerical evaluation of the functions W and VW is difficult in the

vicinity of the origin and more generally at the plane Z = 0. In spite of these

difficulties, a method for numerically evaluating the wave terms W and VW has

recently been developed by Baar and Price [19], Ursell [20] and Newman [21]. In

principle, this method could be used for evaluating the wave potential W in a

manner analogous to that briefly explained in the foregoing for evaluating the

-10-



nonoscillatory near-field potential 0 N" However, it is not clear a priori that the

previously-noted complex behavior of the functions W and VW along the line Y - 0 Z

and X < 0 would not cause serious numerical difficulties for evaluating the wave

potential at the mean free-surface plane z - 0.

An alternative, indirect or Fourier-type, method for evaluating 0 W is used in

[12] and this study. The method is based upon the following Fourier integral
4

representation [13] of the wave term W(X):

+ 02 2 1/2
W(X) - f Im exp[Z(l+t2)+i(X+Yt)(l+t dt , (11)

where Im denotes the imaginary part. By using Eq. (8) in Eq. (11) we may obtain

W(X) = f Im E*(t;) E(t;x) dt (12)

* +.
where the functions E*(t; ) and E(t;x) are defined as

* + 2E*(t;E) - exp[P 2{ + i(u& + v)}] , (13a)

E(t;x) - exp[P'{z - i~u + vy)}] , (13b)

In Eqs. (13a,b) we have

P -vp with p - (1+t2 )1/2, (14a,b)

u 1 1/p and v - t/p ; (15a,b)

we then have

1 > u > 0 and 0 < v < 1 for 0 < t , (16a,b)

with u2 + v2 = 1 . (17)

Equations (12) and (13a,b) yield

g(&;x) - w(E;x,y,z) + W(Q;x,-y,z)

2 f0 Im exp(v 2p 2 ) cos(v2 npt) exp(iv 2p)

exp(P2z) [E+(t;x,y) + E_(t;x,y)] dt , (18)

where the functions E±(t;x,y) are defined as

E±(t;x,y) - exp[-ip2(ux ± vy)] . (19)

The wave potential W is defined by Eqs. (2)-(4) where the Green function

-11-



is replaced by the wave term v 2H(x-&)W/n, as was already noted. In this study, we

limit our attention to the wave pattern behind the ship stern; we then have x >

and H(x-) = 1 for points (x, y, z) on the hull surface h + w. The indirect,

Fourier-type method used in this study for evaluating the wave potential consists in

interchanging the order of integration between the integration point x in the

integrals in Eqs. (3) and (4) and the Fourier variable t in the integral (t8). The

wave potential W is then expressed in the form

(+ CO 22 2 2
W(C) = (2/r) f 0 exp(v 2p ) cos(v 2pt) Im exp(iv 2p) [K+(t) + K_(t)] dt . (20)

In this Fourier representation, the functions K+(t) are given by the sum of the

terms * and X defined by Eqs. (3) and (4), where the Green function G is replaced by
22

the terms v exp(P2z) E±(t;x,y).

The functions K±(t) may then be expressed in the form

K+(t) = K ±(t) + K ±(t) , (21)

K ±(t) = f E+ n t dt + v2 3' exp(p2 z)E_ n da (22)o w -x y h + x

K ±(t) = 3w E+ (t x t+Sx s +iV 2 p )ty dk

+ V2 P 2 fh exp(P 2 z)E± *n± da + f f E± Tr( ) dxdy , (23)

where Eq. (19) was used, the term n± is defined as

n+ = -n + i(un ± vn ) , (24)
z x y

and fE represents the portion of the mean free-surface plane upstream from the plane

X = .

The wave potential *W( ) in Eq. (20) thus is defined in terms of a familiar

Fourier superposition of elementary plane waves propagating at angles 0 from the

x-axis given by

tan 0 = ±v/u = ±t (25)

The amplitudes of these elementary plane-wave components are essentially given by

the functions K±(t), which may thus be referred to as the far-field wave-amplitude

-12-



functions or as the free-wave spectrum functions. These functions contain essential

information directly relevant to a ship's wave resistance and signature. In

particular, the wave resistance, R say, experienced by the ship is defined in terms

of the wave-spectrum functions K+(t) by means of the well-known Havelock formula

nR/(pU2 L) = f0 [K+(t) + K_(t)]2p dt . (26)

The important information contained in the functions K±(t) indeed represents a

significant advantage of the indirect Fourier-type method over the direct integra-

tion method mentioned previously. Furthermore, the integral (20) defining the wave
+

potential 0W( is more amenable to numerical evaluation than the integral (11)
+

defining the wave term W(X) because the wave-spectrum function K +(t) + K_(t)

vanishes as t + -.

Numerical evaluation of the wave integral (20) and of the functions K 0(t) and
+

K (t) defined by Eqs. (22) and (23) are the two main numerical tasks which must be

considered in the indirect Fourier-type approach. The second of these tasks is

examined here. Numerical evaluation of the waterline, hull and free-surface

integrals in Eqs. (22) and (23) is a seemingly relatively-simple task, given the

value of the potential 0 on the mean hull surface h and waterline w and the value of

the free-surface nonlinear term ir(O); in particular, the integrands of the integrals

in Eqs. (22) and (23) are continuous functions.

Nevertheless, accurate and efficient numerical evaluation of the functions

K0 -(t) and K -(t) requires careful analysis because the trigonometric functions

E±(x,y;t) defined by Eq. (19) oscillate very rapidly for large values of P2 =2 2

as is the case for typical values of the Froude number F = 1/v and of the Fourier

variable p2 , 1+t2 = sec28, and because the potential 0 in the integrands of the

2
waterline and hull integrals in Eq. (23) is multiplied by the large numbers v p and

V2p2 ( 2p)2 , respectively. The terms involving the potential 4 in Eq. (23) there-
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fore are dominant and quite large for typical values of v p. More precisely, let

Eq. (23) be expresed in the form

2KH
K K W + iK W  + a K W + io(K -i ±K , (27)

where the free-surface integral and the superscript ± have been ignored for

simplicity and the functions K W , KW " and KH are defined as

KW = fw E+ (txot+sxs)t dt , (28a)- sy

KWd fw E+ lty d. , (28b)

K H" fh exp(P2z)E± on+ da (28c)

with a defined by

a lvp (+t 2 )1/2/ F2 secO / F . (29)

The real and imaginary parts of the sum of the port and starboard contributions to

the functions K , KW , iaKW and O2K are depicted in Fig. 2 for 0 < t - tan8 < 10

(corresponding to 0 < 0 < 840) for a very simple case corresponding to a simple

mathematicaiiy-defined hull form with an assumed simple mathematical expression for

the velocity potential 0 at the hull. More precisely, the mathematical hull consid-

ered in Fig. 2 has constant draft and rectangular framelines, with draft/length aad

beam/length ratios equal to 0.07 and 0.16, respectively. The hull consists of a

pointed bow region 0.2 < x < 0.5 with parabolic waterlines, a straight middle-body

region -0.3 > x < 0.2 and a rounded stern region -0.5 < x < -0.3 with elliptic water-

lines. The potential in Eqs. (28a,b,c) is taken as 0 = F2 exp(v2 z" cos[V 2 (x-1/2)-3w/8],

which corresponds to an elementary plane wave. The foregoing simple hull form and

assumed simple expression for the potential at the hull are used for the calcula-

tions presented in Fig. 2, and for all the calculations presented further on,

because this simple case is adequate for the present purpose of numerically illus-

trating the essential properties of the alternative mathematical expressions for the

wave-spectrum function examined in this study and it permits accurate calculations
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(the required integrations can be partially performed analytically). The results

presented in Fig. 2 correspond to a value of the Froude number equal to 0.15.

Figure 2 shows that the function K is considerably smaller than its components

KW , icKWO and a2KHA. In particular, the waterline and hull integrals idK w and

a 2 K H  do not appear to vanish in the limit 6 + 90* and the waterline integral KW

vanishes appreciably more slowly than the function K . Significant cancellations

therefore occur between the functions ioK and a2K H and between the sum of these

two functions and the function KW . These significant cancellations occur for all

values of 6 but are especially notable for large values of 6, which correspond to

the short divergent waves in the spectrum. The errors which inevitably occur in the

numerical evaluation of the components KW , idKw and a KH cause imperfect numerical

cancellations between these components and corresponding large errors in their sum.

Numerical errors in the sum K can be especially difficult to control because the

errors associated with the numerical evaluation of the hull integral a2K H and the

waterline integral KW + iaKw' are not necessarily comparable (due to differences in

the errors associated with numerical integration over hull panels and waterline

segments). The usual expression (23) for the Neumann-Kelvin correction K in

Eq. (21) thus is quite ill suited for accurate numerical evaluation. A modified

mathematical expression in which the cancellations between the waterline and hull

integrals depicted in Fig. 2 are automatically and exactly accounted for is

presented further on in this study.
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MODIFIED EXPRESSIONS FOR THE FAR-FIELD WAVE-SPECTRUM FUNCTION

Modified expressions for the functions K ±(t) and K ±(t) can be obtained by
0

using Stokes' theorem

fC V.t d - fS (VxV) * n da , (30)

where V represents a vector field, and t and n are unit vectors tangent to a closed

curve C and normal to an open surface S bounded by C, respectively. In particular,

we will use two special forms of Stokes' theorem corresponding to the vector fields
4 4 4 4 4 +

V-fe and V - f where e and e represent unit vectors along the y- and x-axes

and f stands for a scalar function, namely,

fC ty f d - fS (nz f/ax - nx af/az) da (31a)

fC tz f d - fS (nx af/ay - ny 3f/ax) da • (31b)

The functions K 0±(t), which correspond to the so-called zeroth-order slender-ship

approximation to the Neumann-Kelvin theory [9], are considered first, and a

numerically-convenient modified form of Eq. (22) is obtained.
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The zeroth-order slender-ship approximation

It is convenient to divide the mean hull surface h into two parts, namely the

hull side, s say, and the hull bottom, b, as is depicted in Fig. 1. Equation (22)

then becomes
+2

0(t) = fw E+ nx ty di + 2fs exp(P2z)E+ nx da

+ V 2fb exp(P2 z)E+ n da . (32)- x

The hull bottom of a typical ship is a nearly horizontal surface, so that we have

n = 0 on b, but n is usually significant on the hull side in the bow and stern

regions. However, the hull side of a typical ship is a nearly vertical surface,

i.e. we have n = 0 on s. It is therefore convenient to express the integral on thez

hull side in Eq. (32) as an integral involving the source density nz by using

Stokes' theorem in the form of Eq. (31a).

More precisely, Eq. (31a), in which the open surface S and the function f are

taken as the hull side s and the functions F2 u 2exp(P 2z)E, yields

fs exp(P 2 z)E+ nx da =-iu fs exp(P z)E+ nz da

- F2u2 fw E+ t d + u2 f exp(P2z)E+ t dk (33)

where Eqs.(l), (14a) and (15a) were used, and w' is the waterline-like curve

separating the hull side and the hull bottom, as is shown in Fig. 1. The unit tan-
+

gent vector t = (tx, ty, tz ) to w' is pointing towards the bow. In Eq. (33), the

identity t = 0 along the stem and stern lines, which lie in the ship centerplaney

y - 0, was used.

By substituting Eq. (33) into Eq. (32) we may obtain

0 (t) fw E+ (n 2_u2)t dt + u2 f w exp(p2z)E+ t di
-( t l E± x y -2

iv 2 u f exp(P 2 z)E+ n da + v2 fb exp(p2z)E+ n da • (34)[Z

Comparison of Eqs. (32) and (34) shows that, on the hull side, the source density nx

in Eq. (32) has been replaced by the density -iun in Eq. (34). The latter density
z
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is null for a wall-sided ship and, more generally, vanishes in the limit t + -, as

may be seen from Eqs. (15a) and (14b). The hull-side integral therefore is gener-

ally less important in the modified expression (34) than in the original expression

(32). In particular, the hull-side and hull-bottom integrals in Eq. (34) are null

for a wall-sided ship with a flat horizontal bottom, for which Eq. (34) expresses

the functions K0±(t) as the sum of two line integrals.

The trigonometric functions E± defined by Eq. (19) are rapidly oscillatory, as

was already noted. The dominant contribution to the waterline integral in Eq. (34)

therefore stems from the point(s), if any, where the phases P 2(ux ± vy) of the func-

tions E± are stationary. These points of stationary phase are defined by the

conditions udx ± vdy 0 0, which yield the relations

ut ± vt 0 , t = v , t y -u ; (35a,b,c)x y x y

the latter two relations can be obtained from Eq. (35a) by using Eq. (17) and the

identity t 2+t 2 , 1.x y
2

The term u in the integrand of the modified waterline integral in Eq. (34)

stems from the hull-side integral in Eq. (32). We have n - -t along the top water-x y

line for a wall-sided ship. It may then be seen from Eq. (35c) that the term n 2_u2

in the integrand of the waterline integral in Eq. (34) vanishes at a point of

stationary phase for a wall-sided ship. This result indicates that the waterline

integral and the hull-side integral in the original expression (32) cancel one

another in a first approximation (more precisely, within the stationary-phase

approximation) for a wall-sided ship. The major contributions stemming from these

two integrals thus are combined into the modified waterline integral in the alterna-

tive expression (34); and the modified hull-side integral in Eq. (34) is less impor-

tant than the original hull-side integral in Eq. (32), as was already noted.

For the simple mathematical hull form defined previously we have n - 0 on the

-19-



hull bottom b and n = 0 on the hull side s and Eqs. (32) and (34) then yieldz

K0 = K + K I (36a)o w s

KO = K * + K , (36b)o w w

where K and K represent the waterline and hull-side integrals, respectively, inw S

the usual expression (32) and K * and K , correspond to the integrals along the topww

and bottom waterlines w and w', respectively, in the modified expression (34). The

real and imaginary parts of the sum of the port and starboard contributions to the

functions K , K , K * and K , are depicted in Figs. 3a-e for 0 < tane < 5 (i.e. for

0 < 6 < 790) and for the simple hull form considered previously and five values of

the Froude number, namely F = 0.1, 0.15, 0.2, 0.25 and 0.3. For F = 0.1 and 0.15,

Figs. 3a,b show that the bottom-waterline integral Kw is quite small for all values

of 8 and the function K0 is well approximated by the modified top-waterline integral

Kw *, that is we have Kw < < K w* = K0 These figures also show that the modified

waterline integral K * is apprectably smaller than the waterline and hull integralsw

K and K in the usual expression (36a), in accordance with the previous theoreticalw s

considerations. For larger values of the Froude number, Figs. 3c-e show that the

bottom-waterline integral K . is significant for smaller values of 0 but vanishes

rapidly (exponentially) for increasing values of 0, so that we have K 0 = K w* for

sufficiently large values of 0.
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The Neumann-Kelvin approximation: first transformation

The linearized Neumann-Kelvin approximation to the far-field wave-amplitude

funtions K (t) is given by the sum of the zeroth-order slender-ship approximation
+ +

K 0 (t) defined by Eqs.(22) or (34) and the correction term K (t) defined by Eq. (23),

where the free-surface integral is neglected as is indicated in Eqs. (27), (28a-c)

and (29). A modified form of Eq. (23) is now obtained. Stokes' theorem (31a), in

which the surface S and the function f are taken as the hull surface h and the

functions exp(P 2z)E±, yields

fw E+ *ty d h [nz a exppz)E+o- /ax - n a exp(P z)E+4- /az] da (37)

where we used the identity ty = 0 along the stem line, the keel line and the stern

line which, together with the top waterline w, border the hull surface h. By

substituting Eq. (37) into Eq. (23), and upon using Eqs. (24), (19) and (17), we may

obtain

K (t) = fw E+ (t xt+sx s)t d2.

+ iv2p f. exp(p2 z)E± [nzW/Ix-nx3a/Iz±v2 pt(un yvn )4] da . (38)
± xy x

Equation (38) can be modified further by using Stokes' theorem (31b), where S

and f are taken as h and exp(P 2z)E±O, respectively. The contribution of the top

waterline w is null because we have t z 0 along w. The contribution of the stemz

line, the keel line and the stern line, which lie in the ship centerplane y 0, to

the sum K +(t) + K (t) can also be shown to be null. We then have

P2 fh exp(P2z)E+ (un Tvnx)o da = i fh exp(P2z)E+ (nxxa/ay-ny4/ax) da • (39)
y

By substituting Eq. (39) into Eq. (38), and upon using Eqs. (14a) and (15b), we may

obtain

K (t) = f E (t 4) s )t d)M + iv2p fh exp(P2z)E+ a+ da (40)K4 ) =w E+ (xtsxs y h

where the amplitude-functions a+ are defined as

a± = nz30/3x - nx4/3z ± iv(n 3)/3y - nyW/ax) • (41)
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Equation (40) may be expressed in the form

K uK W + iuK H  (42)

where the superscript ± was ignored for simplicity, KW represents the waterline

integral defined by Eq. (28a), a is given by Eq. (29) and KH is the hull integral in

Eq. (40), that is we have

2
KH = fh exp(P z)E± a+ da (43)

Comparison of Eqs. (27) and (42) shows that we have

K K " - -idK . (44)

Thus, the waterline integral K W  and the hull integral -ioK H  have been combined into

the modified hull integral KH via two applications of Stokes' theorem in the form

given by Eqs. (31ab). The real and imaginary parts of the sum of the port and

starboard contributions to the functions iaKw ,  YK H - and ioK H  are depicted in

Figs. 4a-e for 0 < tane < 10 (i.e. for 0 < e < 840) and for the simple hull form and

the assumed simple expression for the potential at the hull considered previously in

Fig. 2. Figures 4a-e correspond to the following five values of the Froude number

F: 0.1, 0.15, 0.2, 0.25 and 0.3. These figures show that the waterline and hull

integrals iaK W  and a KH  are considerably larger than the modified hull integral

iaK H . Although the latter integral is identical to the sum of the integrals

ioK W and a2KH' , it clearly is preferable to evaluate iaK H directly rather than the

sum of the integrals iaK W and a 2K . The modified expression for the Neumann-KelvinsumH

correction term K given by Eqs. (40) and (41) or (42) therefore represents a signi-

ficant improvement in comparison with the usual expression given by Eqs. (23) or (27).

The cancellations between the waterline integral iaK w and the hull integral

a2 KH depicted in Figs. 4a-e can easily be explained mathematically for a wall-sided

ship form. For large values of P 2 , the major contribution to the hull integral KH

stems from the upper part of the hull surface in the vicinity of the waterline,
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where we have n = -t , n = t and n = 0 for a wall-sided ship. More precisely,x y y x z

Eqs. (28c) and (24) yield

KH ' -i fw E+ 4(ut Tvt ) U) fo exp(P2z) dz as P2 +

H y x -_W

We then have
- p2

i HK H u fw E+ (ut Tvt ) dX as + (45)H-w y x

where Eqs. (29), (14a) and (15a) were used. By using Eqs. (28b) and (17) we may

then obtain

K W,- iKH wE (ty±tx)CE a 2 + O(46)

2For large values of P , the trigonometric functions E+ defined by Eq. (19) are

rapidly oscillatory and the dominant contributions to the waterline integrals KW

iK H' and K w-iaK H  defined by Eqs. (28b), (45) and (46), respectively, therefore

stem from the point(s), if any, of stationary phase of the trigonometric functions

E+ defined by Eqs. (35a,b,c). At such a point of stationary phase the terms t- y '

u(ut yvt ) and v(vt ±ut ) in the integrands of the waterline integrals (28b), (45)y x y x

and (46) take the values Tu, Fu and 0. respectively, which demonstrates that the

waterline integral KW, and the hull integral -ioK cancel out in a first

approximation in the limit P2 + - for a wall-sided ship.

The real and imaginary parts of the sum of the port and starboard contributions

to the modified waterline and hull integrals KW and ioK H . respectively, and their

sum K are depicted in Figs. 5a-e for the cases considered previously in Figs. 4a-e

and Fig. 2. It may be seen from Figs. 5a-e that the waterline and hull integrals KW

and iaK H are appreciably larger than their sum K, especially for large values of

tanO. Significant cancellations therefore occur between the waterline and hull

integrals in Eq. (40). Further modifications of the expression for the function

K defined by Eq. (40) are then desirable for numerical calculations. These

modifications are now presented.
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The Neumann-Kelvin approximation: second transformation
. 4. +

Let a, 8, y represent three constants and ex1 ey, e z three unit vectors along the

x-, y-, z-axes, respectively. We have

n * Vx(iae+e = a z-nz /ay)
n e x ey yez 4-any /zn W y

+ B(nz/ /x-nx 4/3z) + y(n x/ay-ny/ax) . (47)

Equation (47) shows that the amplitude functions a+ defined by Eq. (41) may be

expresed in the form

a+ = n * VX( y+ive) " (48)
y z

Let the functions exp(P 2z)E+, where E+ are the trigonometric functions defined

by Eq. (19), be denoted as e+. We then have

_ exp[p 2 {z-i(uxvy)}] and (49)
2 + + +

VC+ - P  +(iuex+ivey -e z  (50)

We have
+ + + . . . . . .+

E£Vx(aex +ey +ye ) 4 Vx+ (aex +e y +Ye )4 - Vy+x(ae x +ey +ye) . (51)

Equation (50) yields

-VC_+x((x+ey+Yez). = + with (52)

m+ = (-±Lvy)e - (a+iuy)ey + i(uO;va) z . (53)

Equation (53) shows that we have

m+ 0 if a - -iuy and Tivy (54)

which yields

ae +ey + z = -iY(ux ±ve y+iz ) " (55)

This condition merely expresses that the vector aex + Bey + and the vector Vs

defined by Eq. (50) are colinear. Equation (51) then becomes

-Vx(u ±ve +ie ) V Vxe(u+ + +i; )+ . (56)
±+ x z- x y

Equations (48) and (56) yield

± a = C+n • VX(y -iA )e d (57)
y-
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+ )4 n + e v( +iF )4 . (58)£+n • x y z =± Vx+Ux+ y z

Let the amplitude functions a+ be expressed in the form

a+ =b+ + c+ (59)

with b+ defined as

b+ =n . Vx( +ey + ez , (60)x y z

where a, y, y are constants. Equations (59), (48), and (60) yield

C+ = -n. V (-1) +e(iv) €- y z

Equation (58) now shows that we have

C+c+ = -r Vx+(ue Ve y+iez4 (61)

if the constants a, y, y are chosen as

a = ur+ , a = 1-vr+ , y = i(r+±v) (62a,b,c)

where r+ is some arbitrary constant. Equations (60), (62a,b,c) and (47) then yield

b+ = ur+(ny a/3Z-nz f/ay) + (1±vr+)(nz3/ax-nx / z)

+ i(r+±v)(n xa/3y-n y/ax) . (63)

Equations (59) and (61) show that we have

=+b_ -r+. V Yx+(Ux-+Vy+i~ z ) . (64)

By using Stokes' theorem (30) we may now obtain

fh +a+ da = fh £±b+ da - ± fe + (utx±vt y+it d , (65)

where the curve c consists of the waterline w plus the bow-keel-stern line, which

lies in the centerplane y = 0. The hull integral in Eq. (40) has thus been

expressed in Eq. (65) as the sum of a hull integral and a waterline integral involv-

ing the constants r+, which are arbitrary and can then be selected at will. The

identities (64) and (65) do not involve the term P 2 appearing in Eqs. (52) and (51).

Along the bow-keel-stern line we have y = 0 and t = 0 and Eq. (49) yieldsY
(ut ±vt +it (ut +it ) exp[p 2 (z-iux)]

± x y z x z

Equations (40) and (65) then show that the contribution of the bow-keel-stern line
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to the sum K + + K can be rendered null if the constants rt are taken as

r+ M Tr .(66)

Equation (65) then becomes

fh +a+ da jh c±b+_ da ± r fw E+(ut ±vt )o dt (67)

since we have tz  0and c+ M E+ along the waterline, where z 0.

Equations (19), (14a), (15a) and (1) yield

E± (ut +vt )dI iF 2 u2 dE+

We then have

-+w E+ (ut x-vt ) dt - +iFu2 (E bow- (E+ 1stern]

TiF2 u2 f E+(a./at) di . (68)

The bow and stern contributions to the function K + + K are null because y 0 and

E+ M E- at the bow and the stern. Equations (67) and (68) then yield

fh C±a+ da ='h c+b_+ da iF 2 u2 r f WE±(a/at) dt . (69)

By substituting Eq. (69) into Eq. (40) we may obtain the following alternative

expression for the Neumann-Kelvin correction K- to the spectrum function:0

K -(t) - fw E[(tx*t+Sx s)ty-uri /at] dt

+ iv2p fh exp(P2 z)E± b± da (70)

where Eqs. (49), (19), (15a) and (1) were used.

By substituting Eq. (66) into Eq. (63) we may obtain

pb+ = A+ , (71)

where the amplitude functions A+ are given by

A+ - r(ny /aZnz y/ay B(n z/3x-nx 4/3z) + iC(n x/ay-ny/ x) (72)

with B and C defined as

B - p(vr-1) and C = p(r-v)

These relations yield

r -Cu + v and B iCv- u (73a,b)
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By using Eqs. (71) , (72) and (73a,b) we may then express Eq. (70) in the form

K -(t) = fw E±[(tx t+Sx s )t ± u(Cu+v)3/3t] dX

j iv2fh exp(P2 z)E+ A+ da , (74)

where the amplitude functions A+ are given by

A+ (Cu+v)kn d0/az-n dcp/ay)
y z

± (Cv-u)(nz3/3x-n x/Dz) + iC(nx 30/y-ny a/ax) . (75)

The constant C in Eqs. (74) and (75) is arbitrary and may then be selected at will.

More precisely, C may be chosen as an arbitrary function of t. These equations thus

define a one-parameter family of alternative mathematically-equivalent expresions
+

for the functions K -t).

The amplitude functions in the integrands of the hull integrals in the

alternative expressions (40) and (74) are given by pa± and FA±, respectively. It

may seem from Eqs. (41), (14b) and (15b) that we have a+ = 0() and pa± 0(t) as

t + -, whereas Eqs. (14b), (15a,b) and (75) show that A+ = 0(1) as t + for any

finite value of the limit C(-) of the arbitrary function C(t). The hull integral in

Eq. (74) therefore vanishes more rapidly than the hull integral in Eq. (40) as t + .

This result implies that the waterline integral in Eq. (74) likewise vanishes faster

than the waterline integral in Eq. (40). Indeed, the term tx t yt in the integrand

of the waterline integral in Eq. (40) is replaced by the term (t t ±uv±Cu2 )t inxyt

Eq. (74). We have t t ±uvCu t t ±uv as t + , with an error 0(u ) = O(t ), andxy xy

t t ±uv = 0 at a point of stationary phase of the trigonometric function E+ definedxy

by Eqs. (35a,b,c). The cancellations occurring for large values of t between the

waterline and hull integrals in Eq. (40), as is depicted in Figs. 5a-e, may then be

expected to be significantly reduced in the alternative expression (74).

For large values of t, Eqs. (14a,b) show that we have P2 >> 1. The major con-

tribution to the hull integral In Eq. (74) therefore stems from the upper part of
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the hull surface in the vicinity of the waterline. For a wall-sided hull we have

nx = -t y, ny = tx and nz - 0 on h in the vicinity of w, and Eq. (75) becomes

A+ - [Vt x;ut y+C(utx ±vt y)]a/az - ica/at , (76)

where the identity tx 30/6x + t y3/3y - ao/3t was used. The hull integral in Eq. (74)

can be approximated by a waterline integral for P2 >> 1. Specifically, we have

Tiv2fh exp(P2z)E+ A+ da - fw E+ A h + (77)

where A- is given by Ah = "iu2A. Equation (76) then yields

Ah± = iu 2 [vtxTuty+C(utx+-Vty)]30/az T Cu2 3l/t . (78)

We may choose sx  0 0. We then have Ot= DO/t for a wall sided hull and the amplitude

function, AW say, in the integrand of the waterline integral in Eq. (74) becomes

A =  t/at . (79)w x

The major contributions to the waterline integrals in Eqs. (74) and (77) stem

from the point(s) of stationary phase of the trigonometric functions E+ and from the

end points, that is the bow and the stern. At a point of stationary phase, Eqs.

(35a,b,c) hold and Eqs. (78) and (79) become

Ah+ iu /z T Cu l , (8Oa)
A - ± u 3/at (80b)

w

where Eq. (17) was used. These equations show that the sum of the waterline and hull

amplitude functions at a point of stationary phase is independent of the constant C,

as must be true in general (i.e. for all values of t, including the limit t +

considered here), and is given by

Ah  + A = u2a/z , (81)

which stems from the hull integral in Eq. (74).
+2

Equations (78) and (80a) show that the amplitude function A- is O(u2) at the

bow and the stern and at a point of stationary phase. The dominant contribution to

the hull integral in Eqs. (74) and (77) therefore stems from the point(s) of
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stationary phase and is O(Fu 3). Equation (80b) shows that the stationary-phase

contribution to the waterline integral in Eq. (74) likewise is O(Fu 3). The bow and

stern contributions to the waterline integral in Eq. (74) stem from the term

t xt y/at (82)

in Eq. (79), which is 0(i). The bow and stern contributions to the waterline inte-

gral in Eq. (74) therefore are O(F2 u 2 ) and dominate the O(Fu 3 ) stationary-phase

contributions to the waterline and hull integrals in the limit t + -. The waterline

integral in Eq. (74) thus dominates the hull integral in this limit.

However, an exception to this general rule occurs if the amplitude function

defined by Eq. (82) is null at the bow and the stern. Such would be the case for

cusped ends, for which we have t = 0. A more realistic case is that of a round-
y

ended ship form, e.g. an oil tanke-, for which we have t = 0 and 3p/3t = 0 at thex

bow and the stern. For such hull forms, the dominant contributions to the waterline

and hull integrals in Eq. (74) stem from the point(s) of stationary phase and are

O(Fu 3), as follows from Eqs. (80a,b). These equations show that significant cancel-

lations might then occur between the waterline and hull integrals in Eq. (74) unless

the function C(t) vanishes in the limit t + -. Accordingly, we impose that the

arbitrary function C(t) in Eqs. (74) and (75) satisfy the condition

C + 0 as t + 0 . (83)

An obvious choice for the function C(t) satisfying Eq. (83) is

c = 0 . (84)

The corresponding expressions for the functions K are readily obtained from Eqs.

(74) and (75). These equations may be expressed in the form

K =KW" + K , (85)

where the superscript ± was ignored for simplicity and the functions K W' and KH''

correspond to the waterline and hull integrals in Eq. (74), respectively. The real
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and imaginary parts of the sum of the port and starboard contributions to the func-

tions KW and ioKH defined by Eqs. (40)-(43) and the functions KW' and K defined

by Eqs. (74), (75) and (84), (85) are depicted in Figs. 6a-e for 0 < tane < 10 (i.e.

for 0 < e < 840) an,! fr the cases considered previously in Figs. 2, 4a-e and 5a-e.

It may be seen from Figs. 6a-e that the functions KW'" and KH vanish more rapidly

than the functions KW and iaK H for increasing values of t = tane, in accordance with

the foregoing theoretical considerations. The cancellations occurring between the

waterline and hull integrals KW and iaK H for large values of tanO thus are signifi-

cantly reduced in the alternative expression KWAA + K , which is therefore

preferable to the expression KW + iOKH for large values of tanG. However, the

functions KW1. and KH" are appreciably larger than the functions K and iaKH for

small values tan6, especially in Figs. 6a,b,c corresponding to small values of the

Froude number, and significant cancellations thus occur between the waterline and

hull integrals KWA and K for small values of tan6. The expression KW +

iaKH therefore is preferable to the expression KWAI + KHA for small values of tan8,

whereas the reverse holds for large values of tanG.

The amplitude functions in the integrands of the waterline integrals in Eqs.

(40) and (74) are nearly identical for small values of t if we have

v + Cu << I as t + 0 . (86)

Equations (41) and (75) show that the amplitude functions a± and TuA± in the

integrands of the hull integrals in Eqs. (40) and (74) likewise are nearly identical

as t + 0 if condition (86) and the condition 1-u(u-Cv) << 1 hold. By using Eq. (17),

we may express the latter condition in the form v(v+Cu) << 1, which is identical to

condition (86). This condition therefore ensures that the waterline and hull

integrals in Eq. (74) are nearly identical to the corresponding integrals in Eq. (40)

in the limit t + 0.
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The large- and small-t conditions (83) and (86) are satisfied if the arbitrary

function C(t) is selected in the form

C = -Xuv . (87)

Condition (86) thern hecomps v(l-Xu 2 ) << 1 as t + 0. Equation (17) shows that we

have v(l-Xu ) v3 as t + 0 if

k + 1 as t + 0. (88)

By substituting Eq. (87) into Eqs. (74) and (75) we may obtain

K +(t) = fw E+ a+ dU iv 2 fh exp(P 2z)E+ A+ da , (89)

where the amplitude functions a+ a.-d A+ are given by

a+ = (tx4t+s s)t ± uv(l-Xu2 )Wa/t, (90a)- y

A+ = v(-Au 2)(ny4/3z-n 3 /ay)

u(1+Xv2)(n 3/3x-n x //z)

- iXuv(na /y-n 3/ ax) . (90b)

An obvious choice for the function X(t) satisfying condition (88) is

X i . (91)
±

The corresponding expressions for the functions K are readily obtained from
22

Eqs. (89) and (90a,b), where we have 1-u2 = v by virtue of Eq. (17). These equa-

tions may be expressed in the form

K K W* + K H* , (92)
KW* H'

where the superscript ± was ignored for simplicity and the functions K and K H *

correspond to the waterline and hull integrals in Eqs. (89), respectively. The real

and imaginary parts of the sum of the port and starboard contributions to the func-

tions KW and idKH defined by Eqs. (40)-(43) and the functions K W* and K H* defined by

Eqs. (89)-(92) are depicted in Figs. 7a-e for the cases considered previously in

Figs. 2, 4a-e, 5a-e and 6a-e. It may be seen from Figs. 7a-e that the functions

K W* and K H* vanish more rapidly than the functions K and idK H for increasing values

-46-



of t - tane. In this respect, the functions K W* and K H* are comparable to the func-
K W

tions K and K H "  depicted in Figs. 6a-e. However, the functions K W* and KH *

depicted in Figs. 7a-e and the functions K W "  and K HA depicted in Figs. 6a-e are

significantly different for small and moderate values of tanS. More precisely, the

functions KW and K are appreciably larger than the functions K and i ,KH $ as

was already noted, whereas the functions K W* and K H* are comparable to the functions

K and iaK H . In fact, the functions K W* and K H* are somewhat smaller than the

functions KW and iaKH for small and moderate values of tanG.

Figures 5a-e and 7a-e show that the cancellations occurring between the

waterline and hull integrals KW and ioKH are reduced significantly in the modified

waterline and hull integrals K * and K *. The expression for the Neumann-Kelvin

correction term K + +K - defined by Eqs. (89)-(91) therefore is preferable to the

expression given by Eqs. (40) and (41) for numerical calculations.

The velocity components 3/Ax, 30/3y and 3t/3z in Eq. (90b) defining the ampli-

tude functions A+ in the hull integral in Eq. (89) can be expressed in terms of the

components *t and *s of the velocity vector v along two unit vectors

t (tx, ty, t ) and 8 = (S y, S) (93ab)
+ + +

tangent to the hull surface. More precisely, we have VO = (30/3n)n+O t+ sS , which

yields

4/3x - nx3/3n + txt + Sxs , (94a)

30/3y -ny/an + tyt +Sy s (94b)

3/3z nz 3/3n + tz t +Szo s  (9 4c)

where /AIn is the velocity component along the unit outward normal vector n to the

hull surface defined as

- xx(95)
ni , (t X s)/ It X s 95

+ +

The unit vectors t and s to the ship hull are tangent to curves which approximately
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correspond to waterlines and framelines, respectively, and they point towards the

bow and the keel, respectively. The vectors t and s thus are roughly (but not
-+

necessarily exactly) orthogonal. At the mean free surface, the vector t is tangent

to the top waterline (and we thus have t = 0) in agreement with our previousz

definition. Equations (94a-c) yield

n 3/ z-n 3 /ay = (n t -n t )dt + (n s -n s )s , (96a)

nz /3x-n x/3z = (nz tx-nxt ) t + (nz sx-nx s)s , (96b)

n 3p/ y-n yt/3x = (n t -n t )pt + (n s -n s . (96c)
x y x y y x x y yx

By using Eqs. (96a-c) we may then express the function A defined as

A = a(n 3/3z-n a/y) + a(n aAx-n x/3z) + Y(nxp/3y-ny4/ax) (97)
y z y

in the form

A =T + S , (98)

where T and S are given by

T = (a ae++ + +

=(ex+ye) • nxt (99a)

S = (ex+ey +ye z) • s . (99b)

By substituting Eq. (95) into Eqs. (99a,b) we may then express Eq. (98) in the form

A= (Tt - S s)/Ii × , (100)

where T' and S' are given by

T'= as -s +ys - (at +t Y-t )t .  (101a)x y z x y z

S' = atx +t y+ytz - (as yy s z )t-s  (101b)

Equations (97), (100), and (101a,b) finally yield

a(n a z-n 3ay) + a(n 3/ax-n x/az) + Y(n x /y-ny/ax) -

[(as x+asy +sz)34/at - (atx+Bty +Y t z ) s]/ I ×  
, (102)

where the relations

--/t= +t= n +ts t (1 03a,b)30/at t +  t~s s and 3 /as s + t s t( 0 a b

were used. Equations (90a,b), (102) and (103a,b) show that the Neumann-Kelvin
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correction K- defined by Eq. (89) may be expressed in terms of the components
4 +

Ot and s of VO along two unit vectors t and s tangent to the hull.
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CONCLUS ION

In summary, the wave potential ()at a point 1, 0) behind the

stern of a ship is defined by Eq. (20), that is we have

W (c) = (2/Tr) f exp(v 2p 2) cos(v 2pt) Tm exp(iv 2p) [K+(t) +K_(t)] dt , (104)

where v and p are defined by Eqs. (1) and (14b), respectively, and the wave-spectrum

frnctions K+(t) are expressed in the form of Eq. (21), as follows:
"!-

K+(t) = K (t) + K (t) . (105)
0 +

in this expression, KO - represent the zeroth-order slender-ship approximation and

+

K the Neumann-Kelvin correction to the slender-ship approximation.
+

The slender-ship approximation K is given by Eq. (22) or by the recommended

modified Eq. (34). We then have

0 (t) = (aw Et 2 2 )t d + u f exp(P 2 z)E+ t d2× y - y

. 2Lis exp(p2z)E+ n da + 22 fb exp(p2z)E+ nx da , (106)

Wher, wA represents a waterline-like curve separating the hull side s and the hull

nott:)m b. In Eq. (105), E+ are the trigonometric functions defined by Eq. (19),

that is

E (x,y;t) = exp[-iP2 (ux ± vy)] , (107)

where P, u and v are given by Eqs. (14a,b) and (15a,b).
+

The Neumann-Kelvin correction terms K are defined by Eqs. (23) and (24). This

well-known expression was modified into the form given by Eqs. (40) and (41) via a

first mathematical transformation. k second ,iathematical transformation led to the

alternative expression given by Eqs. (74) and (75), which involve the arbitrary

function C(t). Mathematical ad numerical considerations led to the selection

+

C(t) -uv and to the recommended expression for the Neumann-Kelvin correction K

given by Eqs. (89), (90a,b) and (91). We then have

K f E+ dk t bv2  exp(P 2 z)E+ '\+ da (108)
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a+ = (t 0t+S 0s)t ± uv3 ao/at (1 0 9 a)
- yx t x y z

[v3 su(l+v 2 )sY ] u ag/at , (109b)v+S X

where Eqs. (17) and (102) were used. In Eq. (109b), t and s are unit vectors

tangent to the hull surface along curves which approximately correspond to waterlines

and framelines, respectively. The vectors t and s point towards the bow and the

keel line, respectively. They are roughly (but not necessarily exactly) orthogonal.
+

At the mean free surface, the vector t is tangent to the top waterline (and we thus
+ +

have t z=0). The components *s and t of VO along the unit tangent vectors s and t

and the velocities 3 /as V . +4 and 30/3t = V .t are related as follows

30/as =  E +t and 3 /at =  t4-+ s , (1l0a,b)

s = (3 /as-E:/at)/(l-e ) and t= (4/3t-Esa/as)/(1-C ) (111a,b)

where e is defined as
4+

E = t.s (112)

The free-surface integral in Eq. (23) associated with the nonlinear terms in the

free-surface boundary condition has been ignored in Eq. (108), which thus corresponds

to the usual linearized Neumann-Kelvin approximation. The generalized Neumann-Kelvin

expression incorporating the free-surface nonlinear term i( ) defined by Eq. (5) is

then given by

K -(t) + ffE E±i '(0) dxdy . (113)

The usual expression for the functions K defined by Eqs. (23) and (24) involves

both the velocity potential * and the velocity vector V4. The alternative
±

mathematically-equivalent expressions for the functions K given by Eqs. (40) and

(41), Eqs. (74) and (75), and Eqs. (89) and (90a,b) only involve the velocity vector

VO, not the potential 4. More precisely, these alternative modified expressions are

defined in terms of the velocity components t and 4s along the vectors t and s
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tangent to the hull, as may be seen from Eq. (102) and is indicated explicitly in

Eqs. (109a,b). The alternative modified expressions obtained in this study

therefore define the wave potential behind the stern of a ship in terms of the speed

and the size of the ship, the form of its hull and the tangential velocity at the

mean hull surface. These expressions are directly suitable for use in conjunction

with a boundary-integral equation method based on a source distribution, or any

other numerical method in which the velocity vector (but not the potential) is

determined on the mean hull surface.

However, the main recommendation of the alternative modified expressions for the
+

functions K - obtained in this study resides in the fact that the cancellations

occurring between the waterline and hull integrals in the usual expression (23) are

considerably reduced in the modified expressions, especially the recommended expres-

sion defined by Eqs. (108) and (109a,b). The sum of the port and starboard contribu-

tions to the function K K + K may be expressed in the alternative forms

1 2
K = KW + ioKw + a 2KH', (114a)

K = K W* +K H* , (114b)

corresponding to the usual expression (23) and the recommended modified expression

(108), respectively. The waterline integrals KW and ioK W  and the hull integral

O2 K in Eq. (114a) are defined by Eqs. (28a-c) and (29), and the terms KW* and KH

correspond to the waterline and hull integrals in the modified expression (108).

The real and imaginary parts of the functions KW , ioK , o2KH', KW* , K H* and

K are depicted in Figs. 8a-e for the simple cases considered previously in Figs. 2,

4a-e, 5a-e, 6a-e and 7a-e. The function K is appreciably smaller and vanishes much

more rapidly with increasing values of tanG than its components a '2KM iK w, and KW

Large cancellations therefore occur among these components and the usual expression

(23) is quite ill suited for accuraLe numerical calculations, notably for evaluating
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the short divergent waves in the wave spectrum corresponding to large values of

tan6. It may be seen from Figs. 8a-e that the modified waterline and hll integrals

K W* and K H* in expression (108) are appreciably smaller and vanish much faster than
A 2

the functions KW I ioK W  and o KH' and are comparable to the function K * The

modified expression (108) thus is considerably better suited than the well-known

usual expression (23) for accurate numerical calculations of the steady wave spectrum

of a ship.

For large values of t = tanG, the major contribution to the hull integral K *

stems from the upper part of the hull surface in the vicinity of the mean waterline

2*due to the exponential function exp(P z). The hull integral K H and consequently

the function K , may then be approximated by a waterline integral for large values

of tanO, as has indeed been shown previously in this study for the special case of a

wall-sided hull. This asymptotic approximation can be extended to arbitrary ship

forms, i.e. ships having flare, and refined by retaining the first few terms in the

asymptotic approximation. A detailed short-wave asymptotic analysis will be

reported elsewhere as it is important for evaluating the short divergent waves of

interest for applications to remote-sensing of ship wakes.
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Fig. 8d The functions Kw ia 10w A a 2KR H. KW ,K H and K for F - 0.25.
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